GEORGIA

INSPECTION OF DAMS

WORKSHOP/ FIELD VISITS

2 Classification

• WE MOVE ON TO

CLASSIFICATION

of dams and water retaining structures (WRS)

-- a method to identify important structures

- A RESULT OF THE SAFETY ASSESSMENT
- CLASSIFICATION IS A KEY COMPONENT OF THE DESIGN AND SUPERVISION OF WRS's
- IDENTIFICATION AND **RANGING** IMPORTANT WRS's IN A SYSTEMATIC WAY.

PRINCIPLES . The **Classification** system

CONSEQUENSES OF A FAILURE TO:

- Human life
- Environment
- Properties
- Infrastructure

THAT PART OF THE STRUCUTRE WHERE A FAILURE HAVE THE GREATEST POTENTIAL FOR DAMAGE.

CALCULATIONS, MAPPING AND SITE VISITS ARE BASIS FOR THE ASSESSMENT.

CLASSIFICATION OF DAMS AND WATER RETAINING STRUCTURES

REGULATION

The classification for most dams is mandatory acc. Law. (national)

PURPOSE

 safety requirements provided with legal autohority. Projects shall be evaluated where breakage consequences impinges on SAFETY.

CRITERIA

 The owner is responsible for evaluation of Class according to a set of criteria. Changes in project or surroundings may lead to changes in consequences, and a new Class.

Text for previous slide

•

- THE TARGET IS TO AVOID ACCIDENTAL BREAKDOWNS OF DAMS THAT CAN LEAD TO LOSS OF LIFE OR DAMAGES.
- THEREFORE, SPECIFIC REQUIREMENTS ARE SET FOR CONSTRUCTION AND OPERATION, AND TO THE OWNER AND ALL INVOLVED.
- THE PURPOSE IN CLASSIFYING WATERCOURSE STRUCTURES IS TO MEET SAFETY REQUIREMENTS PROVIDED WITH LEGAL AUTHORITY IN THE REGULATIONS GOVERNING THE SAFETY AND SUPERVISION OF WATERCOURSE STRUCTURES AS TO THE IMPACTS ON THE STRUCTURES IN THE CASE OF A FAILURE.

A CLASSIFICATION SYSTEM MAKES IT POSSIBLE TO DIFFERENTIATE BETWEEN PROJECTS.

 THE CLASSIFICATION SHALL TAKE ACCOUNT OF WHETHER WATER, AS A RESULT OF THE FAILURE OF THE WATERCOURSE STRUCTURE, WILL COME INTO CONTACT WITH BUILDINGS OR PLACES WHERE PEOPLE GATHER OVER TIME.

Background history for -The **Classification** system

- In Norway, since 1992, (earlier, from 1948 it was part of military evaluation)
- 3 Classes were introduced (at first) (although 5 were discussed). Used up to 2001

Consequence description	Class	Damage potential (no of buildings)		
Large feilure conceruence	1	> 20	1a: > 150	
Large failure consequence	T	> 20	1b: 20-150	
Madium concoquences	2	< 20		
iviedium consequences	Ζ	> 0		
Small consequences	3	0		

After 2001, Requirements to personnel, Reversed numbering so that 3 was highest Class. Differentiated technical demands. 1a >>3a 1b>>3b

Development of - The **Classification** system

from 2010; 5 new Consequence Classes

Consequence Class	Living Units	Infrastructure, puplic functions	Environment and Property		
4	>150				
3	21-150	Damage to heavy traficked road or railway, or other infrastructure with large importance for life and health	Extensive damages to particularly important environmental values or particulalry heavy damagaes to 3rd party properties		
2	1-20	Damages to medium traficked road or railway or other infrastructure with large improtance for life and health	Serious damages to important environmental values or significant damages to 3rd party property		
1	Temporary stay eqv. to < 1 permanent living unit	Damages ton less traficked road or other infrastructure with improtance for life and health	Damages to environmental values or 3rd party property		
0	0	Insignificant consequenses	Insignificant consequenses		

Text for previous slide

THE OVERALL GOAL IS **SAFETY** -- TO **PREVENT BREAKAGES THAT CAN CAUSE DAMAGES** TO PERSONS, ENVIRONMENT AND PROPERTY, POWER PRODUCTION, INFRASTRUCURE OR OTHER IMPORTANT PUBLIC FUNCTIONS.

IN NORWAY, DAMS AND WRS ARE now DIVIDED INTO **5 CONSEQUENCE CLASSES**

THE GIVEN CONSEQUENCECLASS DEPENDS ONLY ON ESTIMATED CONSEQUENCES OF A BREAK. (NOT THE LIKELIHOOD.)

LARGER CONSEQUENCES >>> HIGHER CONSEQUENCE CLASS, AND MORE STRINGENT DEMANDS

 DETACHED HOUSES, SINGLE FLATS OR TERRACED HOUSING UNITS EACH COUNT AS ONE HOUSING UNIT. SCHOOLS, NURSING HOMES, COMPANIES, MILITARY CAMPS, CABINS AND SIMILAR STRUCTURES AND PLACES WITH, AT TIMES, LARGE CONCENTRATIONS OF PEOPLE WILL BE CONVERTED TO HOUSING UNITS.

• THE CONVERSION WILL BE BASED ON THE BASIS OF THE NUMBER OF PERSONS AND HOW LONG THEY WILL BE WITHIN THE AREA.

Equivalent Living Units - The Classification system

Type of building	Staying Period (% of the ye (Months x days x hours) / hours in a	Equivalent Living Units Stay duration x no of people / 2,2		
House, bungalow	Whole Year	8760 hours = 100%	1,0 x 2,2 /2,2 = 1	
Cabin (holiday)	30 d/year, 24hrs/d	30 x 24 / 8760 = 8%	0,08 x 2,2 / 2,2 = 0,08	
School	10 mnths/yr, 20d/mnth, 8hrs/d	10 x 20 x 8 / 8760 = 18%	0,18 x no pupils+employees /2,2	
Nursing institution, employees	47wks/yr, 5d/w, 8 hrs/d	47 x 5 x 8 / 8760 = 21%	0,21 x no employees /2,2	
Nursing institution, patients	whole year	8760 hours = 100%	1,0 x no of patients /2,2	
Industrial Facility	47wks/yr, 5d/w, 8hrs/d	47 X 5 x 8 / 8760 = 21%	0,21 x no of employees /2,2	
Other > eqv. Calc. Camp site, Church, Community house, etc.				

Living Unit is defined as = Flat, apartment, house, bungalow.

Average number of persons, throughout a year, during 24 hrs in a **Living Unit = 2,2** (Population count in Norway, 2011)

All Water Retaining Structures shall be classified in

one of 5 **CONSEQUENCE CLASSES**

CLASS 0: NO CONSEQUENSE OF BREAKAGE STILL: THE OWNER IS RESPONSIBLE FOR THE STRUCTURE AND ITS SAFETY, AND THAT IT IS IN CORRECT SAFETY CLASS

CLASS 1-4 INCREASING CONSEQUENCE OF BREAKAGE.

- THE OWNER PROPOSES A CONSEQUENCE CLASS BASED ON THE DESIGN AND THE CONSEQUENCE CRITERIA.
- THE GOVERNEMENT CONTROLS THE PROPOSAL, AND MAY APPROVE OR SUGGEST A DIFFERENT CLASS.

Classification documentation- The Classification system

 Relevant information; influenced areas, site visits, calculations and simulations

• Maps and photos of project and areas

• Arrangement drawings and project data. (reservoir volume, dimensions and evaluation/description of damBreak consequences.

• Calculated MAXIMUM discharges and water levels after DAMBREAK.

TECHNICAL PLANS AND REQUIREMENTS:

- All dams and waterways shall have a high safety level.
- Already established projects must upgrade accordingly- if necessary!
- (GoG may demand specific upgrading).
- Documentation that Technical Plans meet requirements.
- Dam plans must include Flood calculations, discharge capacities.
- Adhere to regulations and law.
- Qualified planners, and control enigneers.
- Approval prior to construction

FORMS - The Classification system

Anleggseier

Magasin

Navn

Postadresse

punkt i fundamentet til

hvis dammen fiernes

damtopp (m):

Klassifisering av dammer

Iht. forskrift om sikkerhet ved vassdragsanlegg (damsikkerhetsforskriften) kapittel 4. Gjelder både eksisterende og planlagte anlegg.

Det skal fylles ut ett skjema for hver dam. Skjemaet besvares så komplett som mulig, jf. veiledning side 3

STANDARDIZED FORMS FOR DAMS AND PIPES, WITH ENCLOSURES

nnstand (HRV), dvs. den vannmengde som renner ut

fra dam/inntak og videre nedstrøms til samløp med

ende bebyggelse, infrastruktur og/eller terreng som kar

APPLICATION FORMS FOR DAMS AND PIPES ARE STANDARDIZED. ALL APPLICATIONS MUST ALSO INCLUDE INFORMATION AND CALCULATIONS OF FLOODS, DAMBREAK FLOOD WAVES AND ANY SUBMERGED/ INFLUENCED AREAS.

Org.nr.:

E-post

СН	Formål IANGES MAY	Kraftproduksjon	Vannforsyning DIN DAM CLASS, U	Annet (spes	sifiser) / INCREASE. THE OWNE	er (veg,	elendom eller miljø (ja/nei)? Hvis ja, spesifiser: SPONSIBLE FOR T	:gg HISkenBUTerheskeMA¥r rsknt om sikkerhet ved vassdragsanlegg
W	ELL COME UP	PIN A REVALUATIO	N, WHICH TAKES	PLACE	EVERY 15-20 YEARS	(lasse 1: 🗌	Klasse 0:	nser kan plasseres i klasse U. Noen anlegg § 4-1 fjerde ledd (gjengitt under skjemaene er gitt i lov om vassdrag og grunnvann, jf. inder forslag til klasse til NVE for godkjenning.
	Fundament	Fast fjell	Løsmasser	r)00 m³ settes i	klasse 0, se damsikkerhetsforskriften	v dammer/rør i konsekvensklasse 4, 3, 2 eller NVEs nettsider <u>www.nve.no</u> > Sikkerhet, isjon om regelverket fåes også på NVEs igelverk, eller ved å kontakte NVE på telefon
	Dimensjoner	Damhøyde, fra laveste	Fribord fra høyeste reguler	rte	Lengde damtopp (m):			dder

Inføringer fra dam/rør og kastlengde for eregninger kan utelates, se isklasse kan NVE kreve at det utføres slinje for dambruddsbølgeberegninger. Dette rsoner med relevant kompetanse For små raftverk, kan følgende formel for

lengden av bruddåpning) essige bruddåpninger (L) for ulike damtyper.

skades ved dambrudd

vannstand (HRV) til damtopp (m):

Oppdemt magasinvolum (m³) ved høyeste regulerte vannstand (HRV), dvs. den vannmengde som renner ut

3. Målsatte skisser av dam (plan, snitt og lengdeprofil)

4. Vurdering/beskrivelse av bruddkonsekvenser

5. Beregning av bruddvannføring fra dam (kan utelates dersom klassen er opplagt, se veiledning s.3)

3):

EXAMPLE

CLASSIFICATION APPLICATION (FOR RABBEN)

(see pdf)

Calculate and estimate effects of a dam break

The **Classification** system example:

Bruddvannføring [m3/s]

Diagram dim. flom Fyllingsdam

24,10,2007

Bruddforløp dam Merravadet, seksjon fyllingsdam

DAM MERRAVADET I GRØNFJELLÅGA

Dette notat omhandler vurdering av avledningskapasiteten ved de fire bruene og eventuelle konsekvenser for damtype og underlag for klassifisering av dam.

KLASSIFISERING FORSLAG:

dammen kan i prinsipp plasseres i kategori klasse 0, etter som dimensjonerende flom eller teoretisk dambruddsbølge ikke vil påvirke nedenforliggende infrastruktur eller landskap.

Situasion

Grønnfjellåga renner gjennom en Grønnfjelldalen med ujevne fjellformasjoner fra damstedet helt ned til Henriksfors og Dunderfors. Nedenfor Dunderfors blir elva bredere og har skåret seg gjennom tykke stein og gruslag ned mot fjell. Løsmassene går gradvis over til mindre grove fraksjoner ned mot utløpet i Ranaelva. På lokale partier ligger stor stein på fjell ute i elva. Elvebreddene er forholdsvis høye og skogvokste.

Følgende situasjoner er beregnet:

GRØNLIFT ÅGA	FLOMHEREGNINGER	0/6	· ickded	200	500	1000	1 6x 01000
and the second second second		m'm	.08,2	·62,9	67,3	170,3	255,9
Vanabriogskapasilet i Gradjelkiga		brukes for a	tanı dasası	Э	1	284	284
Dambruddsvannføri	nger /lyffing-betongdam	kombinder	/86			-	

Elva har god avledningskapasitet på hele strekningen. Elva renner under fire bruer på de nederste 4 km der alle har god avledningskapasitet for store flommer.

Kontrollpunkt	Avstand, m fra dam	Kapasitet, m ³ /s under bru *)	Berøres av flom/dambrudd	Merknad
Gardsvei -bru til Rabben	370	Ca. 600	ja	Fornyes/heves i anleggsfasen
Bru 357 Grønnfjelldalsveien	1585	> 1500	Nei	Ingen tiltak
Bru til Stupforsmoveien	3010	> 1000	Nei	Ingen tiltak
Dunderfors	3100		Nei	
NSB, jernbanebru	3680	> 1500	Nei	Ingen tiltak
Ranaelva	3770		Nei	254

*) Beregnet verdi med minst 1m fribord under bru

Tid etter bruddstart [timer]

The **Classification** system example:

Klassifisering av trykkrør

Iht. forskrift om sikkerhet ved vassdragsanlegg (damsikkerhetsforskriften) kapittel 4. Gjelder både eksisterende og planlagte anlegg. Gjelder bare trykkrør i tilknytning til kraftanlegg.

Det skal fylles ut ett skjema for hvert rør. Skjemaet besvares så komplett som mulig, jf. veiledning side 3

Anleggseier	Navn MiljøEnergi Nordland	AS	Org.nr.: 993 215 430				
	Postadresse Postboks 500	8601 MoiRana	E-post tore.rafdal@miljokraft-nordland- mp				
Anleggets navn, beliggenhet og	Navn på kraftverk Rabben k	raftverk, Grønfjellåga	3				
byggear	Fylke Nordland	Kommune Rana	Kommune Rana		Planlagt ferdig år/byggeår: 2017		
Rørfundament	Grøft i fjell	Grøft i løsmasser		Frittliggende (på konsoller)			
Magasin	Oppdemt magasinvolum (m ³) ved høyeste regulerte vannstand (HRV), dvs. den vannmengde som kan renne ut hvis det oppstår rørbrudd						
Opplysninger om rør	Materialtype:	Maksimal trykk-høy	de:	Lengde: 140	Min. og maks. diameter:		
Bruddvannføring og kastlengder (sted for rørbrudd angls I vedlegg 4)	Bruddvannføring totalt rørbrudd (m³/s):	totalt Kastlengde totalt rørbrudd (m):			Kastlengde fra mindre sprekk/hull i røret (m):		
Opplysninger om evt. brudd- konsekvenser, jf. veiledning	Fare for at boliger berøres (ja/nei)? Hvis ja, oppgi antall: i	Fare for skade på infrastruktur (ja/nei)? Hvis ja, spesifiser (veg, jernbane mv.):		Fare for annen skade, f.eks. eiendom eller miljø (ja/nei)? Hvis ja, spesifiser: i			
Eiers forslag til klasse	Klasse 4: Klasse 3:	iasse 3: 🗌 Klasse 2: 🗌 Klasse 1: 🗌 Klasse 0: 🗌					
Underskrift	Sted og dato		Navn				

Frittliggende, nedgravde og innstøpte rør, der produktet av trykk (MPa) og diameter (m) er mindre enn 0,2, settes i klasse 0 (1 MPa tilsvarer 100 m vanntrykk), se damsikkerhetsforskriften § 4-1.

Følgende dokumentasjon skal vedlegges, se damsikkerhetsforskriften § 4-3 og veiledning side 3:

- Kart som viser beliggenhet av trykkrør, og berørt vassdragsstrekning, dvs. fra dam/inntak og videre nedstrøms til samløp med større elv eller innløp i større sjø
- Foto av vassdragsavsnitt på berørt vassdragsstrekning som har tilliggende bebyggelse, infrastruktur og/eller terreng som kan skades ved rørbrudd
- 3. Vurdering/beskrivelse av bruddkonsekvenser
- Beregning av bruddvannføring og kastlengder fra rør (kan utelates dersom klassen er opplagt, se veiledning s.3)

Skjema m/vedlegg sendes til NVE, Seksjon for damsikkerhet, postboks 5091, 0301 Oslo, eller nærmeste NVE regionkontor.